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A multi-platform comparison of efficient probabilistic methods in the prediction of total knee
replacement mechanics
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bComputational Biomechanics Lab, Department of Engineering, University of Denver, 2390 S. York, Denver, CO 80208, USA

(Received 11 June 2009; final version received 10 November 2009)

Explicit finite element (FE) and multi-body dynamics (MBD) models have been developed to evaluate total knee
replacement (TKR) mechanics as a complement to experimental methods. In conjunction with these models, probabilistic
methods have been implemented to predict performance bounds and identify important parameters, subject to uncertainty in
component alignment and experimental conditions. Probabilistic methods, such as advanced mean value (AMV) and
response surface method (RSM), provide an efficient alternative to the gold standard Monte Carlo simulation technique
(MCST). The objective of the current study was to benchmark models from three platforms (two FE and one MBD) using
various probabilistic methods by predicting the influence of alignment variability and experimental parameters on TKR
mechanics in simulated gait. Predicted kinematics envelopes were on average about 2.6 mm for tibial anterior–posterior
translation, 2.98 for tibial internal–external rotation and 1.9 MPa for tibial peak contact pressure for the various platforms
and methods. Based on this good agreement with the MCST, the efficient probabilistic techniques may prove useful in the
fast evaluation of new implant designs, including considerations of uncertainty, e.g. misalignment.
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1. Introduction

Computational analysis has been used in orthopaedic

studies since the 1980s (e.g. Huiskes and Chao 1983;

Prendergast 1997). Modelling the behaviour of total knee

replacements (TKRs) is challenging, as the stresses

generated within the prosthesis and the supporting bone

are a function of the kinematics, and the kinematics in turn

are a function of the implant design, the relative position of

the components and the balance of the soft tissues. Early

studies used quasi-static loading conditions, effectively

ignoring the influence of the dynamic kinematics of the

joint. Recently, various researchers have adopted implicit

(Otto et al. 2001) and explicit (Godest et al. 2002; Halloran

et al. 2005a, 2005b) finite element (FE) or rigid-body

(Fregly et al. 2003) modelling techniques to simul-

taneously predict kinematics and stresses.

Clinical and experimental simulator studies have

reported substantial variability in TKR kinematics

(DesJardins et al. 2000; Mahaluxmivala et al. 2001;

Dennis et al. 2003; Zihlmann et al. 2005). This variability

has considerable implications; e.g. for TKR wear

(McEwen et al. 2001) and range of motion (Walker and

Garg 1991). Computational models have shown good

agreement with experimental simulator results (Godest

et al. 2002; Halloran et al. 2005a, 2005b), providing

important model validation as well as additional insight

into performance metrics that are difficult to measure

experimentally (like contact pressure (CP)). Although

models are typically developed for ‘average’ conditions,

they are an ideal platform to explore the influence of

variability, as a consequence of either patient-, surgery- or

component-related factors. Parametric studies have been

performed to assess model sensitivity, but these studies

have typically explored the influence of only one or two

variables at a time (e.g. Li et al. 2001; Taylor and Barrett

2003; Besier et al. 2008; Elias et al. 2008). Probabilistic

evaluations assess multiple parameters simultaneously and

represent each input parameter as a distribution in order to

predict an envelope of performance. In addition to

accounting for potential interaction effects, the probabil-

istic approach predicts performance bounds and sensitivity

factors for each input.

Probabilistic FE analyses have been applied to assess

the structural reliability of orthopaedic components

(Browne et al. 1999; Nicolella et al. 2001; Dar et al.

2002). More recently, the application of efficient

probabilistic techniques has been used to assess the

performance of TKR (Laz et al. 2006a, 2006b).

The advanced mean value (AMV) method [corroborated

with a 1000 trial Monte Carlo simulation technique

(MCST)] assessed the impact of experimental variability

in a knee wear simulator on predicted TKR mechanics by

determining the performance envelopes of joint kinematics
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and contact parameters. In the Laz et al. (2006a) study,

eight component alignment parameters and four exper-

imental parameters were represented as Normal (Gaus-

sian) distributions and used with probabilistic methods to

assess the response of the TKR model.

A variety of software packages exist for FE, multi-

body dynamics (MBD) and probabilistic methods. This

study seeks to evaluate whether model predictions would

differ depending on the software platform used, to

evaluate the robustness of the computational and

probabilistic approach. The aims of this benchmark

study are to perform probabilistic TKR mechanics

predictions using three different platforms combining FE

or MBD solvers with statistical/probabilistic analysis

methods and so to evaluate the accuracy and efficiency of

various platforms and probabilistic methods.

2. Methods

This study will evaluate performance envelopes for tibial

anterior–posterior (AP) translation, tibial internal–exter-

nal (IE) rotation and tibial peak contact pressure during a

standard gait cycle using explicit FE and rigid-body

modelling techniques and will compare results of the

AMV and response surface methods (RSMs) to those from

MCST.

2.1 Deterministic modelling of the in vitro simulator

In all three analyses, an isolated tibiofemoral joint was

modelled (Figure 1). The loading conditions represented

the force-controlled gait simulation of a knee wear

simulator (Walker et al. 1997; DesJardins et al. 2000; ISO

Standard 14243-1, 2002). Models were developed from

digital geometry representations of semi-constrained,

fixed-bearing, cruciate-retaining TKR. The distal surface

of the tibial insert was supported in the inferior–superior

(IS) direction, while loading conditions applied to the

insert included an AP load and IE torque. An axial load

was applied along the IS axis and the femoral flexion–

extension angle was applied along an axis consistent with

the experimental knee simulator.

Varus–valgus (VV) and tilt of the insert were both

constrained. AP, medial–lateral (ML) and IE degrees of

freedom (DOF) were unconstrained. The femoral com-

ponent was constrained in IE, ML and AP DOF but

unconstrained in VV and IS DOF and displacement-

controlled flexion rotation was applied. Axial compressive

force was also applied to the femoral component. The

model included simulated soft-tissue constraint present in

the knee simulator consisting of four springs constraining

the insert AP displacement and IE rotation (Figure 1).

Three different analysis packages were investigated in

order to build a baseline deterministic model, both to

benchmark the results and to provide a platform for further

stochastic modelling.

(1) Abaqus/Explicit: An explicit FE model of the TKR

(Laz et al. 2006a) was developed in Abaqus/Explicit

(Simulia, Providence, RI, USA). The tibial insert was

represented with three-dimensional, eight-nodal

hexahedral elements (,8500), and rigid triangular

surface elements (,19,000) were used for the

femoral component. A convergence study was

implemented before the probabilistic analysis to

confirm if the mesh density was acceptable (Halloran

et al. 2005a). The femoral and tibial components were

represented as rigid bodies, with a non-linear

pressure–overclosure relationship (Halloran et al.

2005b).

(2) MSC ADAMS: The MBD model was developed in

ADAMS (MSC Software Corporation, Santa Ana,

CA, USA). The deterministic study principally

involved modelling with the ADAMS/View module.

In order to model contact, ADAMS uses an

‘IMPACT’ function, which relates normal reaction

force to interpenetration displacement and can be

used for extremely high-speed single-contact ‘surro-

gate’ models (e.g. Lin et al. 2009). However, if

contact pressure information is required, then a

unified single-body contact force is not adequate (as it

does not include information about the force

distribution), so instead the articulation must be

‘discretised’ into multiple contacts across the surface

to estimate the local contact force contribution at

each location. Various established penalty-based
Figure 1. Probabilistic study parameters in the FE model of
TKR. (For the definition of the abbreviations used, see Table 1.)
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algorithms exist for such a distributed contact model,

for example, the elastic foundation model (Fregly

et al. 2003).

(3) PAM-CRASH: An explicit FE model (Godest et al.

2002) was developed in PAM-CRASH (ESI/PAM

System International, Rungis Cedex, France). Both

the femoral component and the tibial polyethylene

insert were modelled as rigid bodies using four-node

shell elements. An advanced penalty based contact

algorithm (contact element 44 in PAM-CRASH) was

used to model the contact between the two

components. This algorithm operates by penalising

the geometric penetration of the slave nodes by

counteracting forces proportional to the penetration

depth of the tibia and a user-specified penalty factor.

2.2 Probabilistic modelling

Probabilistic modelling techniques are utilised to account

for uncertainty in multiple input parameters and to predict

a distribution of performance. In the present probabilistic

evaluations, 12 experimental parameters (Table 1)

representing component alignment, loading and exper-

imental conditions were evaluated. The experimental

parameters included four translations and four rotations of

the femoral component and tibial insert. The rotations and

translations defined the position of the femoral component

and tibial insert relative to the fixed rotational axes

(Figure 1). In addition, experimental set-up parameters

(the spring stiffness constant, the ML separation of the

springs and ML load split) and friction were also

included. The levels of variability (Table 1) were

estimated for a knee simulator with standard deviations

of 0.5 mm for translational and 18 for rotational alignment

(Laz et al. 2006a). Each of the parameters was assumed to

be independent and normally distributed.

Analyses were performed using three probabilistic

methods (MCST, RSM and AMV) in three probabilistic

platforms:

(1) Nessus/Abaqus: The Nessus probabilistic software

(SwRI, San Antonio, TX, USA) was integrated with

the FE model through custom scripting. The AMV

and MCST methods were applied.

(2) Insight/ADAMS: The statistical analysis module

Insight/ADAMS was used with the MBD solver.

RSM and MCST methods were applied.

(3) PAM-OPT/PAM-CRASH: The optimisation soft-

ware PAM-OPT was used in conjunction with the

PAM-CRASH model. A 1000-trial MCST analysis

was performed. Following this, a first-order RSM

implemented in MATLAB (Mathworks, Inc., Natick,

MA, USA) was implemented with a reduced set of

MCST points (25, 50 and 100).

A brief description of the probabilistic methods

utilised is included to highlight the differences in

accuracy, efficiency and robustness. MCST involves

repeated sampling of the input parameters according to

their distributions, with the accuracy of the resulting

output distribution dependent on the number of trials

performed. The MCST is a robust method which provides

accurate results with many trials, but is computationally

expensive.

For RSM (Box and Wilson 1951), an analytic function

of the input variables is fitted to approximate the output

parameter over the sample space, based on an initial set of

model evaluations. The initial set of model evaluations can

be performed at random, but better results are achieved by

distributing the trials regularly across the sample space.

In the most basic case, a low-order polynomial and

regression technique may be used to determine the term

coefficients. Subsequently, MCST is performed using this

response surface equation, instead of performing

additional evaluations (resulting in lower computational

cost). RSM works best when the output response is well

represented by the analytic function, i.e. relatively linear,

smooth and monotonic models; highly non-linear func-

tions are not well represented. The higher the order of the

response surface equation used, the more terms arise;

hence, more samples are needed to achieve a good fit with

the regression. Beyond second-order terms, this becomes

impractical for many models. In the current study, the

TKR model is expected to be relatively linear within the

small perturbation range being studied here; accordingly, a

first-order (linear) response surface equation was eval-

uated based on initial sample sizes of 25, 50 and 100 trials

Table 1. Input factors for probabilistic study from (Laz et al.
2006a).

Parameter MV Variability s

AP position of femoral
FE axis (FEax_AP)

0 mm 0.5 mm

IS position of femoral
FE axis (FEax_IS)

25.4 mm

AP position of tibial
IE axis (IEax_AP)

7.62 mm

ML position of tibial
IE axis (IEax_ML)

0 mm

Initial femoral FE rotation
(Init_Fem_FE)

08 18

Initial femoral IE
rotation (Fem_IE)
Tilt of the tibial insert
(insert tilt)
VV position of the tibial
insert (insert_VV)
ML position of spring
fixation (DML)

28.7 mm 0.5 mm

Spring stiffness (K) 5.21 N/mm 0.09 N/mm
ML load split (60–40%)
(ML_load)

60% 2.5%

Friction coefficient (m) 0.04 0.01

Computer Methods in Biomechanics and Biomedical Engineering 3

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
S
t
a
n
f
o
r
d
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
2
2
:
1
2
 
2
1
 
M
a
r
c
h
 
2
0
1
1



and subsequent MCST of 1000 evaluations of the response

surface equation.

The AMV method is an optimisation-based method

utilising a mean value (MV) approximation augmented

with higher-order terms to determine the response at a

specified probability level (Wu et al. 1990). Although an

approximate technique, the AMV method has been shown

to work well for well-behaved monotonic systems

(Easley et al. 2007) and has been implemented in the

prediction of performance envelopes for TKR (Laz et al.

2006a). The MV family of methods begins with a local

first-order (linear) approximation of the function about the

MV of the input function – whereas RSM builds a global

model. The MV model is suitable for fairly linear

problems but is not accurate for non-linear behaviour; its

main practical use is as the basis for the subsequent AMV.

The AMV method takes the linear model derived by the

MV method and attempts to include corrective terms to

approximate the higher-order effects. AMV takes the MV

prediction and, using data from the calculated most-prob-

able point (MPP) of interest, corrects this value for a single

level of desired probability (or desired output), which

gives the corrected AMV estimate of the output.

The calculated MPP is the global maximum of the

probability distribution function of all the possible

different points of failure along a ‘limit state’ (i.e. failure)

function. Essentially, the AMV gives a more accurate

representation at one localised point of the possibility

space, whereas RSM gives a less accurate representation,

but is valid across the entire possibility space.

For each platform, the results of the combined

probabilistic/mechanical modelling were a bounded

response representing the 1st and 99th percentiles over

the gait cycle for the performance metrics: AP translation,

IE rotation and peak CP. AP translation and IE rotation are

reported relative to the ‘settled’ reference positions of the

components. Additionally, sensitivity factors, representing

the effect of varying each input parameter on the output

response, identify the most and least important parameters.

With AMV, the sensitivities are computed in the standard

normal variate space as the unit vector from the origin to

the MPP and serve as relative indicators of the

contributions of variability in the parameters to variability

in each performance measure. In the PAM-OPT/PAM-

CRASH and Insight/ADAMS studies, the sensitivities at

each time point were calculated as the linear regression fit

of the input variables (‘normalised’ based on standard

deviations) to the reduced set of 25, 50 or 100 MCST

points. The absolute magnitude of the sensitivity values at

each time point was then averaged over the gait cycle to

give a mean absolute value. To provide an overall

indication of importance, the reported sensitivity factors

are the normalised averaged absolute values over the

gait cycle.

3. Results

3.1 Comparison of the deterministic results

The deterministic results for AP translation, IE rotation and

peak CP showed good agreement between the Abaqus,

ADAMS and PAM-CRASH platforms and with the

experimental results (Figure 2). To quantify the differences

between the different model results and the experimental

data, the root mean square (RMS) variations over the gait

cycle were computed between each model and the

experimental data and between models (Table 2). RMS

differences between model and experiment averaged 0.6 mm

and 1.08 for AP translation and IE rotation, respectively.

RMS differences between models were of a similar

magnitude. While the general behaviour in predicted peak

CP was similar for all models, there were differences in the

predicted magnitude, mainly due to the difference in contact

formulations between platforms.

Computation time for an analysis was approximately

3 min in Abaqus/Explicit (Intel Pentium 4 3 GHz, 2 Gb

RAM), 4 min in PAM-CRASH (Intel Pentium 4 3.20 GHz,

2 Gb RAM) and 6 min in ADAMS (Intel Pentium 4 3 GHz,

2 Gb RAM). Notably, for all three platforms, the analysis

time is sufficiently low to allow larger-scale probabilistic

studies.

3.2 Comparison of the probabilistic results

Envelopes of the 1–99% bounds were predicted for the

TKR performance measures using the three platforms:

Nessus/Abaqus, Insight/ADAMS and PAM-OPT/PAM-

CRASH. The MCST comparisons (Figure 3) showed good

agreement with trend and performance envelope size for the

various platforms. Similar behaviour was observed for the

response surface and AMV methods (Figures 4 and 5).

The differences between the methods (MCST versus

AMV and MCST versus RSM) for the average and the

maximum bounds for the various platforms (Table 3) were

within 5% for kinematics. On average, envelope sizes

were about 2.6 mm for AP translation and 2.98 for IE

rotation. For all platforms, the kinematic envelopes were

larger during stance than during the swing phase; this can

be attributed to a combination of implant conformity, joint

loading and external simulator constraint. During the

stance phase, the implant has greater conformity and is

subjected to higher loads than in the swing phase; under

such conditions, small changes in the alignment variables

require large adjustments of the implant for the system to

reach its lowest energy state. In the absence of high joint

loads, the external spring constraint plays a greater role in

stabilising the implant, reducing the effects of alignment

variability on predicted kinematics in the swing phase.

Bounds of peak CP predictions from MCST were

comparable between the platforms, with average envelope

size being 1.4, 2.5 and 2.8 MPa for Nessus/Abaqus,

M.A. Strickland et al.4
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Figure 2. Tibial kinematics and tibial contact pressure from the
three models: Abaqus/Explicit, MSC ADAMS and PAM-
CRASH. (a) AP translation (þ anterior/2posterior), (b) IE
rotation (þ external/2 internal) and (c) peak contact pressure.

Figure 3. Comparison of predicted envelopes (1–99%)
from MCST implemented in Nessus/Abaqus, Insight/ADAMS
and PAM-OPT/PAM-CRASH. (a) AP translation (þ anterior/
2posterior), (b) IE rotation (þ external/2 internal) and (c) peak
contact pressure.

Table 2. RMS differences between the various platforms.

Deterministic
comparison

AP translation
(mm)

IE rotation
(8)

Peak contact
pressure (MPa)

Abaqus and
experiment

0.5 0.9 N/A

ADAMS and
experiment

0.8 1.3 N/A

PAM-CRASH and
experiment

0.6 0.9 N/A

Average 0.6 1.0
ADAMS and Abaqus 0.5 0.9 1.1
PAM-CRASH and
Abaqus

0.6 0.9 2.1

ADAMS and PAM-
CRASH

0.4 1.0 3.0

Average 0.5 0.9 2.1

Computer Methods in Biomechanics and Biomedical Engineering 5
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Insight/ADAMS and PAM-OPT/PAM-CRASH platforms,

respectively (Figure 3(c)).

Greater differences were observed in peak CP than in

the kinematic measures, with largest RMS difference

being up to 3.0 MPa between ADAMS and PAM-CRASH

platforms (Figure 2(c)). It is difficult to acquire CP data

from the experimental simulator under dynamic gait

loading conditions; this underscores the need for

modelling. This study was based on a previously verified

FE model in Abaqus (Halloran et al. 2005a). Differences in

predicted CP magnitudes were minimal between the two

FE platforms, while greater differences observed from

PAM-CRASH may be a result of a different rigid-body

contact formulation implemented in this platform.

The RSM was evaluated to characterise the sensitivity

of the response surface equation to the number of initial

trials, specifically 25, 50 and 100 trials using PAM-

OPT/PAM-CRASH and Insight/ADAMS platforms

Figure 4. Comparison of predicted envelopes (1–99%) for
RSM based on 25, 50 and 100 trials and MCST (solid line)
with 1000 trials. Results from PAM-OPT/PAM-CRASH
for (a) AP translation (þ anterior/2posterior), (b) IE rotation
(þ external/2 internal) and (c) peak contact pressure and from
Insight/ADAMS for (d) peak contact pressure.

Figure 5. Comparison of predicted envelopes (1–99%) for
AMV and MCST with 1000 trials using the Nessus/Abaqus
platform. (a) AP translation (þ anterior/2posterior), (b) IE
rotation (þ external/2 internal) and (c) peak contact pressure.

M.A. Strickland et al.6
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(Figure 4). The kinematic (AP and IE) results for PAM-

OPT/PAM-CRASH showed agreement between all RSM

models and the MCST results, implying that an RSM based

on 25 trials was sufficient. However, the RSM predictions

of peak CP were more sensitive to the number of trials

used. While good agreement could be achieved with PAM-

OPT/PAM-CRASH for the maximum value of peak CP

over the gait cycle using the 100-trial RSM, the secondary

peak at 10% gait and the lower swing phase pressures were

not well captured (Figure 4(c)). For the Insight/ADAMS

platform, similar RSM results were observed where 25

trials were sufficient to characterise model kinematics

(Table 3), but 100 trials were not sufficient to characterise

the swing phase (Figure 4(d)). Similar results were observed

for the AMV method (Figure 5, Table 3), where maximum

differences in the size of the predicted AP and IE ranges were

0.07 mm and 0.188 for the AMV and MCST methods,

respectively. As contact pressure during swing phase

exhibited more non-linear behaviour, approximate methods

such as RSM and AMV were less accurate (Figures 4 and 5).

Regarding computation time, MCST (1000 trials) ranged

from 50 to 100 h, AMV results for a single performance

measure (173 trials) required,9 h, RSM (25 trials) required

2 h and RSM (100 trials) required 8 h.

The sensitivities, reported as average of the absolute

values over the gait cycle (Figure 6), illustrated the relative

impact of the parameters on AP translation, IE rotation and

peak CP. For AP translation and IE rotation, good

agreement with important parameters and their magni-

tudes was obtained with the three software platforms.

Insert tilt and femoral IE alignment were the most

important parameters affecting AP translation and IE

rotation, respectively. The sensitivity factors for peak CP

identified four contributing parameters with relatively

equal contributions: initial femoral flexion–extension,

femoral IE, insert tilt and VV alignment.

4. Discussion

In this benchmarking study, predictions of TKR

performance under simulated gait conditions were

Table 3. Comparison of average and maximum ranges of predicted 1 and 99 percentile bounds for the various performance metrics and
platforms.

Measure/platform AP translation (mm), Ave/Max IE rotation (8), Ave/Max Peak contact pressure (MPa) Ave/Max

Nessus/Abaqus
MCST (1000 trials) 2.2/3.4 2.8/4.5 1.4/4.8
AMV 2.3/3.4 2.7/4.3 0.5/1.7

ADAMS/Insight
MCST (1000 trials) 2.7/4.1 3.1/4.4 2.5/3.7
RSM (50 trials) 2.7/4.0 3.1/4.5 1.8/3.4

PAM-OPT/PAM-CRASH
MCST (1000 trials) 2.9/4.1 2.8/4.5 2.8/6.2
RSM (50 trials) 2.8/4.1 2.8/4.5 2.4/5.7

Figure 6. Sensitivity results for the various platforms
represented by the averaged absolute values over the gait
cycle for: (a) AP translation (þ anterior/2posterior), (b) IE
rotation (þ external/2 internal) and (c) peak contact pressure.

Computer Methods in Biomechanics and Biomedical Engineering 7
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performed with three FE/MBD platforms using different

probabilistic methods. By comparing the results from the

various platforms, this study evaluated whether the choice

of computational platform affected the predicted results, as

well as the accuracy and efficiency of the MCST, RSM and

AMV probabilistic methods.

Notably, the deterministic results for AP translation, IE

rotation and peak CP obtained using FE and MBD

software platforms showed similar patterns throughout the

gait cycle and were in close agreement with experimental

kinematic data and between platforms (Figure 2).

The RMS differences between the models were on

average 0.5 mm for AP translation and 0.98 for IE rotation.

Greater differences were observed in peak CP than in the

kinematic measures, with RMS difference being up to

2.1 MPa between PAM-CRASH and Abaqus. The biggest

difference was between ADAMS and PAM-CRASH of

3.0 MPa. Differences in the magnitude of CP were

attributed to the different software platforms and the

methods of implementing contact in a rigid-body

simulation. Factors that are complicit in these differences

include the contact model parameters, the frictional

parameters and the effects of inertia within the model

configurations. Nonetheless, in spite of these small

differences, overall the trends and magnitudes of the

responses matched favourably.

Supported by the accuracy of the deterministic results

and fast computational times, probabilistic analyses were

performed using three platforms: Nessus/Abaqus, Insight/-

ADAMS and PAM-OPT/PAM-CRASH. MCST was

carried out for all models and predicted that similarly

sized performance envelopes were obtained for the

kinematics in all three methods. Larger differences were

observed in the 1 and 99% envelopes for peak CP, but

these are again attributed to deterministic model

differences rather than probabilistic methods. MCST

computational times were similar for the three different

platforms.

The increased computational times associated with

probabilistic FE/MBD modelling represent an important

barrier to incorporate such techniques in the design-phase

evaluation of TKR implants. For example, the 1000-trial

MCST implemented in PAM-CRASH/PAM-OPT

required 4 days of computational time. This highlights

the need to implement and validate more efficient

alternatives to the ‘gold standard’ of MCST. Comparison

of RSM envelope sizes to MCST yielded an average

difference of 0.08 mm (2.9%) and 0.038 (1.0%) in AP

translation and IE rotation, respectively (Figure 4(a),(b),

Table 3), and computational costs substantially reduced to

4 h for the 50-trial RSM analysis. Similarly, comparison of

AMV envelopes to MCST in Nessus/Abaqus yielded an

average difference of 0.08 mm (3.7%) and 0.18 (3.6%) in

AP translation and IE rotation, respectively (Figure 5,

Table 3). The computational time required for the AMV

analyses was ,9 h. It is important to note that the RSM

and AMV methods are less robust for highly non-linear or

non-monotonic systems. This explains the greater

differences in CP results during the swing phase (Figures

4(c),(d) and 5(c)), when minimal constraint (due to small

joint loads) resulted in a more non-linear system.

The efficient RSM and AMV methods provide distinct

advantages compared to one another. The AMV method

provides local approximation of system behaviour at

pre-defined points in the possibility space, while RSM

presents a global approximation across the entire

possibility space. The RSM is less accurate than AMV at

targeted local design point(s), but is more flexible than

AMV in predicting behaviour across the entire possibility

space. An RSM analysis requires a fixed number of trials

regardless of the number of desired output measures; in

contrast, an AMV analysis requires an additional trial for

every desired output measure (e.g. AP translation, IE

rotation or CP) and probability level (e.g. 1 or 99%).

As such, when implementing probabilistic methods to

a new system whose response may be unknown, it is

prudent to initially verify the outputs of the efficient AMV

or RSM methods with an MCST simulation.

Independent of platform, the sensitivity factors

identified the same set of important input parameters

(Figure 6). Specifically, insert tilt was the greatest

contributor to AP translation, while femoral IE alignment

had the largest sensitivity factor for IE rotation. In addition

to insert tilt and femoral IE alignment, two other alignment

parameters were important to contact pressure: the VV

position of the tibial insert and the initial femoral FE

rotation.

These factors have been identified in clinical studies

(Anouchi et al. 1993; Catani et al. 2006) and underscore

the importance of component alignment to TKR

mechanics (Dorr and Boiardo 1986).

In conclusion, this study performed benchmark

comparisons of FE and MBD as well as probabilistic

software packages and generally found good agreement

between results independent of the modelling environment.

Our results suggest that researchers can use both FE- and

MBD-based approaches and probabilistic methods besides

MCST with confidence that the results will be comparable

across different platforms. The accuracy of the efficient

probabilistic methods, e.g. RSM and AMV, can aid in the

quicker design phase evaluation of the robustness of TKR

implants to surgical and environmental variables.

Notes
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