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a b s t r a c t

Orthopaedic implants, as well as other physical systems, contain inherent variability in

geometry, material properties, component alignment, and loading conditions. While com-

plex, deterministic finite element (FE) models do not account for the potential impact of

variability on performance, probabilistic studies have typically predicted behavior from sim-

plified FE models to achieve practical solution times. The objective of this research was

to develop an efficient and versatile probabilistic FE tool to quantify the effect of uncer-

tainty in the design variables on the performance of orthopaedic components under relevant

conditions. Key aspects of the computational tool developed include parametric and auto-
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mated FE model creation for changes in dimensional variables, efficient solution using the

advanced mean-value (AMV) reliability method, and identification of the most significant

design variables. Two orthopaedic applications are presented to demonstrate the ability of

the computational tool to efficiently and accurately represent component performance.
Finite element modeling

1. Introduction

Inherent scatter exists in many variables in engineering
design, for example, component geometry, loading condi-
tions, and material strength and fatigue properties. The
combined effects of variability in individual parameters can
dramatically affect component performance. Probabilistic
modeling provides an approach to quantitatively determine
the impact of multiple variables on specific performance met-
rics. Each variable is typically represented as a distribution,
and a distribution of performance is predicted. By understand-

ing the distribution of performance, evaluations of quality (e.g.
design for six sigma) and risk assessment can be performed.
Sensitivity factors are also determined as a result of prob-
abilistic analysis and provide quantitative evaluation of the
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contribution of each design variable to the overall variation in
performance.

Probabilistic modeling has been widely used in the auto-
motive and aeronautical industries [1–3] and has recently
been applied to orthopaedic applications. The most com-
mon applications are in structural reliability where distri-
butions of stress are compared to distributions of material
strength. Recently, studies have taken a probabilistic approach
to assessing the structural integrity of orthopaedic implants.
Browne et al. [4] applied reliability theory to aid in fracture
mechanics-based life prediction procedures for a tibial tray
y of Denver, 2390 S. York St., Denver, CO 80208, United States.

component represented as a cantilever beam subjected to
constant amplitude loading. Dar et al. [5] demonstrated how
Taguchi and probabilistic methods could complement each
other to account for uncertainties when predicting stresses

erved.
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As a result, deterministic or simplified geometries are gener-
ally used. This work presents a fully automated computational
tool to update parametrically defined 3D models by modifying
geometries and meshes through custom programming with
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commercially available interfaces. Together, these techniques
enable an efficient, versatile probabilistic analysis tool.

2. Methods

2.1. General probabilistic approach

A wide array of probabilistic methods exists, with methods
differing in the efficiency and accuracy of their solution. A brief
description of probabilistic methods is included here; more
detailed descriptions can be found in Refs. [13–15].

In probabilistic analyses, variables are represented as dis-
tributions, where common types are normal, lognormal and
Weibull. The probability density function (PDF) is essentially
a continuous histogram; the area under the curve for some
interval gives the probability that the performance metric will
lie in that interval. The cumulative distribution function (CDF)
is the integral of the PDF and specifies the probability of the
response occurring at or below a specified value. The CDF
always ranges in value from 0 to 1, representing a 0% prob-
ability at the lower bound and a 100% probability at the upper
bound.

Probabilistic methods predict a distribution of the perfor-
mance metric, from which the likelihood of a specific level of
performance can be determined. In structural reliability appli-
cations, the performance function, g, is typically defined as

g(x) = R(x) − S(x)

where R is the strength or resistance and S is the applied stress.
The probability of failure (pf) is the likelihood that the stress
exceeds the strength or that the performance function g < 0.
The reliability or probability of survival, ps, is the converse;
ps = 1 − pf.

2.2. Probabilistic methods

The most commonly applied probabilistic model is the Monte
Carlo method which involves randomly generating values for
each variable according to its distribution and then predicting
the distribution of performance through repeated trials. The
Monte Carlo method will always converge to the correct solu-
tion, but is computationally expensive as the accuracy of the
solution method is dependent on the number of trials.

The most probable point (MPP) methods are considerably
more efficient than the Monte Carlo simulation; this is espe-
cially significant when performing repeated FE analyses. The
MPP methods are based on mapping of the original random
variables into independent standard normal variables and
determining the most probable point using optimization [15].
Reliability can be computed based on the location of the MPP
by a variety of methods including first or second order reli-
ability methods (FORM or SORM) or a higher-order method
such as advanced mean-value with iterations (AMV+) method
[17]. While the MPP methods are approximate, they have been
shown to be quite accurate in comparisons with Monte Carlo
c o m p u t e r m e t h o d s a n d p r o g r a m s

with finite element analysis (FEA) in a study of a fixation
plate represented as a cantilever beam. Ng and Teo [6] studied
the influence of material moduli uncertainty in cervical spine
components on biomechanical responses and disc annulus
stress using a 3D FE model and Monte Carlo simulation
methods.

The femoral stem component of a total hip replace-
ment has been the subject of several probabilistic structural
integrity studies [7–10]. Nicolella et al. [7] developed a 3D
model of an implanted cemented hip stem as the subject of
a probabilistic study where variability in material properties
and loading was considered in order to predict a probability of
failure due to three separate cement failure modes. Bah and
Browne [9] used an idealized cylindrical FE model to represent
an implanted cemented hip stem in order to assess the most
likely mode of failure and to identify which parameters had
the largest contribution, where geometry, material properties
and loading were considered random variables.

Studies to date have typically used a simplified finite ele-
ment model, such as a cantilever beam or idealized cylindri-
cal geometry, or a two-dimensional representation. Variabil-
ity was commonly applied to material properties and load-
ing conditions, while geometric uncertainty was only con-
sidered for idealized geometry. Typical results reported from
these studies include a distribution of predicted stress, pre-
dicted probability of failure and/or sensitivity factors. The
common objective of the previous studies was to demonstrate
the applicability of probabilistic methods to orthopaedic com-
ponents, and clinical or experimental verification was not
reported.

In addition to structural integrity studies, probabilistic
methods have also been used in orthopaedic applications to
represent inherently random features such as numerical crack
densities in bone [11] and porosity in bone cement [12]. This
approach can account for the scatter seen experimentally in
damage accumulation and fatigue life at a constant stress
level.

The primary objective of this research was to develop a gen-
eralized computational tool to facilitate probabilistic analysis
of orthopaedic components. The computational tool improves
on previous probabilistic studies by including dimensional
variability in a complex geometry and incorporating more
realistic modeling conditions while maintaining computa-
tional efficiency. The secondary objective was to demonstrate
the tool for two applications, one investigating the effect of
geometry and material property variability on implant per-
formance, the other the effect of component placement and
experimental setup variability on the kinematics of a total
knee replacement.

Traditionally, probabilistic analyses present several chal-
lenges, including potentially significant computational time
due to the many trials required. This work utilizes an efficient
reliability method coupled with calibrated rigid body analy-
ses to deliver an efficient and accurate solution. Geometric
perturbations are also typically difficult with FE-based analy-
ses due to the impact of a dimensional change on the mesh.
simulation results, while requiring a small fraction of the
number of computations.

The mean-value (MV) method constructs a mean-based
response function and computes the MPP for the specified
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probability levels. As a first-order method, it provides a good
approximation of the solution near the mean, but can deviate
significantly toward the tails for non-linear problems. The MV
method requires n + 1 trials, where n is the number of random
variables. The advanced mean-value (AMV) method utilizes
higher-order terms to achieve a better representation of the
response and requires n + 1 + m trials, where m is the num-
ber of specified probability levels. The advanced mean-value
with iterations (AMV+) method involves the implementation
of AMV but also includes iterations on the MPP to ensure
that convergence to a specified level is reached. AMV+ has
been shown to be very accurate even for non-linear prob-
lems, though the number of trials varies with the problem
[16].

2.3. Sensitivity factors

Design sensitivity factors are another valuable result of proba-
bilistic analyses, as they indicate the effect of each individual
parameter on the reliability function. There are relative and
absolute sensitivities, each with unique advantages. Relative
sensitivities are commonly referred to as probabilistic sensi-
tivity factors, ˛, and give the change in safety index, ˇ, with

respect to the standard normal variate, u. The probabilistic
sensitivity factor is defined as

˛i = ∂ˇ

∂ui
= ∂p

∂ui

∂ˇ

∂p

Fig. 1 – Flowchart of automated FE-based probabilistic m
n b i o m e d i c i n e 8 5 ( 2 0 0 7 ) 32–40

for each variable with p equal to a specific probability level.
The sensitivity factor ˛ is useful for relative ranking of ran-
dom variables. A positive sensitivity indicates a direct rela-
tionship between the value of the variable and the response,
while a negative sensitivity indicates an inverse relationship.
The safety index, ˇ, is represented in standard normal variate
space, where, for example, probabilities of 0.01 to 0.99 are rep-
resented by standard normal variates of −3 to +3. The standard
normal variate is a function of the mean, standard deviation
and distribution type, so the ˛ sensitivity factor is not always
ideal for the design process.

Instead, absolute sensitivities, S� and S� , may be evaluated.
These give the change in probability with respect to the mean
and standard deviation, respectively, and are determined by

S� = ∂p

∂�i

�i

p
, S� = ∂p

∂�i

�i

p

where the sensitivities are non-dimensional, allowing com-
parisons to be made between all of the variables. These sensi-
tivities indicate how much the mean and standard deviation
of each random variable contribute to the variability in the
response.

2.4. Computational tool for probabilistic FE modeling
The computational tool developed in this research com-
bines commercially available software with custom scripting
to develop a flexible and robust model. The computational

odel, integrating Nessus, Unigraphics, and Abaqus.
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ool combines a probabilistic software package (Nessus1)
ith CAD/CAE software (Unigraphics NX2) and a finite ele-
ent solver (Abaqus3/Standard and Explicit) (Fig. 1). Nes-

us was used to define the variables, implement the prob-
bilistic model and perturb the variables for each trial. The
eometry was defined parametrically within Unigraphics NX
UG), and custom C scripting used UG Open API functions to
pdate the geometric parameters, regenerate and remesh the
odel. The scripting developed was generic and applicable

o any parametrically defined part or finite element model.
baqus/Standard or Explicit was used as the finite element
olver, as specified by the FE model, and a custom Python
cript extracted the results. The results for each trial were
eturned to Nessus, which then specified the perturbed vari-
bles for the next trial. This automated process was contin-
ed until the analysis was complete when convergence or the
pecified number of trials was reached.

. Application 1: effect of variability in
eometry and material properties on fatigue
erformance of a hip stem

he objective of the first application was to provide quantita-
ive measures of component reliability or probability of failure
hich accounts for uncertainties inherent to manufacturing

olerances and material properties.

.1. Deterministic model

deterministic FE model was developed and validated as the
asis for the probabilistic model. A set of geometric param-
ters was used to describe the pertinent characteristics of
three-dimensional femoral stem: stem diameter (d), stem

ength (L), radius of curvature of the stem (R), neck length (N),
ttachment point of the neck (x, y), and neck angle (�) (Fig. 2).
oading and boundary conditions were developed to represent
standard experimental fatigue test, such as ASTM F-1440

17], ISO 7206 [18], or Semlitsch and Panic [19]. The experi-
ental test consisted of a concentrated force on the femoral

ead, while the distal third of the stem was fixed. Under these
onditions, the component experiences a more severe loading
ondition than in vivo; the loading is representative of a loos-
ned stem which is not supported proximally by surrounding
one. The maximum stress occurred at the lateral aspect of the
tem, where most fatigue cracks are known to initiate [20,21].

.2. Probabilistic model

en parameters were selected for variable inputs to the
robabilistic model: the seven geometric parameters cited

bove and three material properties (Table 1). The geometric
ariables were described by normal distributions, while the
aterial property variables were described by lognormal dis-

ributions, as this best represents observed behavior [13].

1 Southwest Research Institute, San Antonio, TX.
2 UGS, Plano, TX.
3 Abaqus, Inc., Providence, RI.
Fig. 2 – Parametric design of hip stem.

Mean values for the hip stem dimensions were based on repre-
sentative values, and the standard deviations were estimated
based on historical metrology data. The values for Young’s
modulus and Poisson’s ratio were selected for cast Co–Cr–Mo
[22,23]. Representative mean and standard deviations were
used for the fatigue limit of cast Co–Cr–Mo, where fatigue limit
is defined as the stress corresponding to a fatigue life of 10 mil-
lion cycles. For this analysis, a deterministic load of 507 N was
applied.

The deterministic model of the hip stem geometry served
as the foundation for the probabilistic study. A series of
scripts generated new geometry within UG based on the per-
turbed variables. The mesh (∼31,400 tetrahedral elements),
loading and boundary conditions were then updated for the
new geometry before an Abaqus/Standard input file was
written.

A 1000-trial Monte Carlo simulation and the MPP (MV, AMV,
AMV+) reliability methods were employed for the probabilistic
analyses; the former served as verification for the latter, effi-
cient methods. The structural integrity performance function
was defined as

g(X) = Sf − �(X)

where Sf is the fatigue limit of the material, � the stress
predicted by the FE analysis, and X is the vector of random

variables. Additionally, a performance function based on com-
ponent life could be implemented using a stress-life material
relation.
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Table 1 – Hip stem probabilistic study parameters (application 1)

Parameter Description Distribution Mean S.D.

d (mm) Stem diameter Normal 9.0 0.08
L (mm) Stem length Normal 180.0 1.50
R (mm) Radius of curvature Normal 144.0 0.25
N (mm) Neck length Normal 39.0 0.25
x (mm) Horizontal distance to neck Normal 22.5 0.25
y (mm) Vertical distance to neck Normal 10.7 0.25
� (◦) Neck angle Normal 45 1
E (GPa) Young’s modulus Lognormal 210.0 38.0

Lognormal 0.280 0.005
Lognormal 356 23

Fig. 4 – Sensitivity factors (˛) for the probabilistic analysis
� Poisson’s ratio
Sf (MPa) Fatigue strength

3.3. Application results and discussion

The model predicted the distribution of peak stress in the hip
stem from the Monte Carlo analysis with a mean of 367 MPa
and a range from 340 to 399 MPa between the 1% and 99%
bounds. The probability of survival or reliability is based on
the performance function and represents the likelihood of the
component surviving 10 million cycles. For the applied load
and the fatigue strength distribution (Table 1), the probabil-
ity of survival was 31.90% for the Monte Carlo analysis based
on 1000 trials (Fig. 3). Since the sampling error for the Monte
Carlo analysis (1000 trials) was calculated as 4.33% [24], the
actual probability of survival could range between 28.95% and
34.85%.

The MV first-order approximation predicted a probability of
survival of 39.87% and required 10 FE analyses. While the non-
linearity of the model results in a notable inaccuracy of the
MV method, the results of the AMV and AMV+ compared well
with the Monte Carlo results (Fig. 3). The probabilistic model
using the AMV method predicted a probability of survival of
34.19% in 12 trials. The AMV+ analysis predicted a probability
of survival of 33.77%, respectively, and required 212 trials for

convergence.

The difference in predicted probability of survival between
the AMV method and the 1000 trial analysis was within the
absolute error of the Monte Carlo analysis. The good compar-

Fig. 3 – Cumulative distribution functions of performance
function from MV, AMV, AMV+, and Monte Carlo
probabilistic analyses of a hip stem.
of a hip stem.

isons between the AMV and Monte Carlo results are especially
notable when considering the small number of trials required
to achieve the AMV results. The computation time to run a
single trial was approximately 60 s on a 3 GHz PC, requiring
∼17 h for 1000 trials.

In experimental testing at a fixed load level, fatigue lives
have been shown to vary by as much as 1.5 orders of mag-
nitude in a Ti–6Al–4V stem under ISO 7206 test conditions
[25] and by more than an order of magnitude in a Co–Cr–Mo
stem under four-point bend conditions [26]. The probabilis-
tic model attempted to reproduce the observed fatigue life
variability and predicted probability of survival representing
the likelihood of the component surviving 10 million cycles.
The variability in geometry and material properties predicted
a range of peak stresses that may account for some of the
variability observed in component life. Fatigue data from the
literature showed that a 10% reduction in stress range near
the endurance limit produced an 80× increase in median life,
resulting in a significant number of the specimens surviving 5
million cycles [25].

Probabilistic sensitivity factors, ˛, showed that uncertainty
in the fatigue strength and the stem diameter contributed
most to the variability in the predicted stress, and the neck

angle variable contributed to a lesser extent (Fig. 4). The uncer-
tainty in the material properties (Young’s modulus, Poisson’s
ratio) did not contribute significantly. The absolute sensitivity
factors S� and S� showed that the mean value of the fatigue
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turbations of the geometries were performed, Unigraph-
ics was not used in this application. Python scripting was
written to manipulate the deterministic Abaqus/Explicit

Table 2 – Stanmore knee probabilistic study parameters
(application 2)

Parameter Description Mean S.D.

FEax AP (mm) AP position of femoral FE axis 0 0.5
FEax IS (mm) IS position of femoral FE axis 25.4 0.5
IEax AP (mm) AP position of tibial IE axis 7.62 0.5
IEax ML (mm) ML position of tibial IE axis 0 0.5
Init Fem FE (◦) Initial femoral FE rotation 0 1
Fem IE (◦) Initial femoral IE rotation 0 1
Insert Tilt (◦) Tilt (FE rotation) of the insert 0 1
Insert VV (◦) VV position of the tibial insert 0 1
�ML (mm) ML position of spring fixation 28.7 0.5
K (N/mm) Spring constant 5.21 0.09
c o m p u t e r m e t h o d s a n d p r o g r a m

trength, diameter, horizontal distance to neck attachment (x),
nd neck angle variables had a larger effect on the predicted
tress variability than the standard deviation.

The loading and boundary conditions applied to the hip
tem are characteristic of an experimental fatigue test, and
herefore the probabilistic results presented here do not com-
are directly to hip stem performance in vivo. However, the
est conditions do represent an industry standard and implant
erformance in response to such loading is commonly used to
upport regulatory approval of new products.

. Application 2: effect of variability in
omponent placement and experimental setup
n TKR kinematics

he objective of the second application was to investigate
he effect of variability in component alignment and exper-
mental setup on the kinematic performance of a total knee
eplacement (TKR). The Stanmore knee wear simulator [27,28]
s force controlled and allows six degree of freedom artic-
lation of a TKR under gait loading conditions to evaluate
ibiofemoral kinematics and wear. The platform for this analy-
is was a previously verified, dynamic explicit FE model [29,30]
f TKR components under simulated gait loading. The explicit
E model of the simulator is a useful tool in performing para-
etric evaluation of design variables. The model utilizes com-

arisons with experimental simulator results as a means of
alidating the modeling techniques. Since the experimental
est includes inherent variability, the inclusion of variability
n the modeling leads to a more rigorous validation of the

odel.

.1. Deterministic model

he deterministic FE model was developed from CAD models
f a semi-constrained, fixed-bearing, cruciate-retaining total
nee replacement (TKR). The femoral component was mod-
led with rigid triangular surface elements (∼19,000), while the
nsert was represented with three-dimensional, eight-noded
exahedral elements (∼8500). Through a previous conver-
ence study, it was concluded that the mesh density utilized
or these inserts was acceptable [29].

The applied gait loading was based on ISO 14243 [31] and
ncluded profiles (0.5 Hz) for femoral flexion angle, applied
oad, anterior–posterior (AP) load and internal–external (IE)
orque. To reproduce the conditions in the experiment, a load
ffset to apply a 60–40 medial–lateral (ML) load split and sim-
lated soft tissue constraint provided by a set of springs were
odeled (Fig. 5).
In order to efficiently complete the many simulations nec-

ssary for a full probabilistic analysis, the femoral and tibial
omponents were represented as rigid bodies, with an opti-
ized non-linear pressure–overclosure relationship [30]. The

ontact pressure–surface overclosure relationship, formulated
o that the predictions from the rigid body analysis accurately

eproduced the kinematics and contact mechanics of a fully
eformable model [30], reduced the computational time from
bout 6 h (fully deformable) to about 6 min (rigid body) per
nalysis.
Fig. 5 – Parameters for probabilistic analysis of Stanmore
knee simulator (not shown: ML load split and friction).

4.2. Probabilistic model

The probabilistic analysis was performed using 12 variables:
4 translational and 4 rotational component alignments, and
4 experimental parameters (Fig. 5, Table 2). The experimen-
tal parameters included medial–lateral load split, location of
spring fixation, spring constant and coefficient of friction.
Mean values were assigned the appropriate deterministic val-
ues from the simulator. Experimental standard deviations
were not available, nor easily determined. As a result, the
standard deviation levels are approximated from estimates of
experimental accuracy. All variable inputs were described by
normal distributions (Table 2).

The probabilistic tool combining Nessus, Abaqus, and
Python scripting was applied. Since no dimensional per-
ML Load (%) ML load split (60–40%) 60 2.5
� Coefficient of friction 0.04 0.01

Note: all parameters represented as normal distributions.



m s i n b i o m e d i c i n e 8 5 ( 2 0 0 7 ) 32–40

Fig. 7 – Probabilistic sensitivity factors (˛) for AP translation
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input file to update the variables with the values gen-
erated by Nessus for each trial. The performance met-
rics evaluated were relative tibiofemoral kinematics, AP
translation and IE rotation, through which sliding distance
has the potential to impact wear. The performance met-
rics were evaluated at 80 locations throughout the gait
cycle.

Both Monte Carlo and AMV methods were used to predict
the bounded response of each performance metric. The Monte
Carlo simulation was performed for 1000 trials. The imple-
mentation of the AMV method was complicated by the applied
gait loading conditions. In order to determine the performance
metrics, AMV analyses were performed at percentile levels
(1%, 50% and 99%) for each discrete location in the gait cycle. A
total of 253 evaluations (∼24 h on a 3 GHz PC) were conducted
for each performance metric evaluated at 3 probability levels
with 12 variables and 80 points throughout the gait cycle.

4.3. Application results and discussion

The results of the probabilistic analysis described the range
of kinematics that could be observed in the simulator with
the specified level of variability. The AMV and Monte Carlo
results showed excellent agreement and differed by less than

the error for the 1000-trial Monte Carlo analysis; the AMV
results are presented. Envelopes representing the 1% and 99%
bounds are predicted for tibiofemoral AP translation and IE
rotation (Fig. 6). The maximum ranges were 3.44 mm for AP

Fig. 6 – Model-predicted envelope (1–99%) for experimental
(a) AP translation and (b) IE rotation over the gait cycle.
and IE rotation. Results are normalized averages for the
entire gait cycle.

translation and 4.30◦ for IE rotation. The predicted envelope
captured nearly all of the experimental data for both AP trans-
lation and IE rotation (Fig. 6) with the exception of a portion
of the swing phase between 60% and 100% gait. The results
show good tracking; however, differences in magnitude are
likely caused by the presence of friction and damping in the
experimental simulator that are not included in the model.
While presented for kinematics, the modeling approach can
be applied similarly for other performance metrics, including
contact pressure and wear.

The probabilistic sensitivity factors, ˛, were averaged over
the entire gait cycle and normalized (Fig. 7). Uncertainty in the
tilt of the tibial insert was shown to contribute most to the vari-
ability in AP translation. The inferior–superior (IS) position of
the femoral FE axis, the initial femoral flexion–extension (FE)
rotation, and the coefficient of friction were also significant.
The AP and ML position of the tibial IE axis, the ML position of
the spring fixation, the spring constant and the ML load split
were determined not to have a significant contribution to the
scatter in AP translation for the standard deviation level inves-
tigated. The femoral IE rotational alignment was found to be
the most significant variable with respect to the variability in
IE rotation. The varus–valgus (VV) position of the insert was
also important, while position of the femoral FE and tibial IE
rotational axes, ML position of the spring fixation, the spring
constant, and initial femoral FE rotation contributed negligibly
to the scatter in IE rotation.

5. Discussion

In both applications, small variability in the parameters led to
substantial variability in the performance metrics. In the first
application, variability in dimensions and material properties
under fatigue test conditions produced a stress range (1–99%)
from 340 to 399 MPa in the hip stem resulting in a probabil-
ity of the component surviving 10 million cycles of 33.77%. In

the second application, the probabilistic model predicted kine-
matic ranges (1–99%) of 3.44 mm for AP translation and 4.30◦

for IE rotation based on small variability levels in component
alignment and experimental setup. It is important to note, that
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he predicted variability in performance, as well as the sensi-
ivity parameters, are dependent on the standard deviation
evels of the input parameters.

The broad capabilities of the computational tool were
emonstrated for structural reliability and kinematic per-
ormance applications. An understanding of the variability
n performance allows component design to be assessed
nd provides a platform to evaluate the reliability of
rthopaedic implants. While parameter sensitivity studies
f joint mechanics (e.g. [32–35]), including design of exper-

ments, have been performed previously, this research rep-
esents a novel application of probabilistic modeling to
uantify the effects of component alignment variability. The
rimary advantage of probabilistic analysis over single degree-
f-freedom sensitivity studies is that the effects of variable

nteraction on performance are incorporated.
The sensitivity factors provided insight into the signifi-

ant and insignificant parameters. In experimental testing
nd manufacturing, knowledge of the sensitivities can lead
o time and cost savings by controlling variables to greater or
esser precision. The effect of changes to a manufacturing pro-
ess, material property, and/or experimental procedure can
e quantitatively assessed using this approach. More broadly,
ensitivity factors can provide surgeons with insight into the
ritical component placement variables to ensure consistent
ong-term performance.

The computational tool addressed some of the historical
hallenges of probabilistic modeling. Probabilistic modeling
as typically been performed on simplified models in order
o be computationally viable. In this work, dimensional vari-
bility, complex and realistic FE models and efficient proba-
ilistic methods were realized. Scripting developed with UG’s
pen API programming interface demonstrated perturbation
f dimensional parameters within a 3D parametric geometry
nd automated meshing and finite element solution. Greater
E model realism was incorporated in application 2 where
KR components were run under simulator gait loading con-
itions. Viable computation times were realized both through
he use of efficient probabilistic methods (AMV) and efficient
nite element methods (explicit rigid body analysis [30]) with-
ut sacrificing accuracy or complexity. The AMV technique
roved to be significantly more efficient (4× to 83×) while
chieving similar results to the 1000-trial Monte Carlo method.
he demonstration of two distinct applications illustrates the
ersatility of the computational tool to perform evaluations of
ny orthopaedic or structural component.

. Conclusions

computational tool for performing probabilistic FE modeling
as been developed that links commercially available soft-
are with custom scripting to perform efficient and accurate

nalyses of complex problems. The capabilities were demon-
trated for two applications including an assessment of the
tructural reliability of a hip stem component and an evalua-

ion of the impact of component alignment and experimental
etup on knee wear simulator kinematics. The model helps
o address traditional challenges in probabilistic modeling
ncluding dimensional perturbation of FE geometry, complex
b i o m e d i c i n e 8 5 ( 2 0 0 7 ) 32–40 39

and realistic loading conditions, and computational efficiency
(AMV method). The computational tool is robust and versa-
tile, allowing the assessment of performance of a wide range
of orthopaedic and structural components.
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